Radiotherapy treatment planning with contrast-enhanced computed tomography: feasibility of dual-energy virtual unenhanced imaging for improved dose calculations

نویسندگان

  • Sachiko Yamada
  • Takashi Ueguchi
  • Toshiyuki Ogata
  • Hirokazu Mizuno
  • Ryota Ogihara
  • Masahiko Koizumi
  • Takeshi Shimazu
  • Kenya Murase
  • Kazuhiko Ogawa
چکیده

BACKGROUND In radiotherapy treatment planning, intravenous administration of an iodine-based contrast agent during computed tomography (CT) improves the accuracy of delineating target volumes. However, increased tissue attenuation resulting from the high atomic number of iodine may result in erroneous dose calculations because the contrast agent is absent during the actual procedure. The purpose of this proof-of-concept study was to present a novel framework to improve the accuracy of dose calculations using dual-energy virtual unenhanced CT in the presence of an iodine-based contrast agent. METHODS Simple phantom experiments were designed to assess the feasibility of the proposed concept. By utilizing a "second-generation" dual-source CT scanner equipped with a tin filter for improved spectral separation, four CT datasets were obtained using both a water phantom and an iodine phantom: "true unenhanced" images with attenuation values of 2 ± 11 Hounsfield Units (HU), "enhanced" images with attenuation values of 274 ± 23 HU, and two series of "virtual unenhanced" images synthesized from dual-energy scans of the iodine phantom, each with a different combination of tube voltages. Two series of virtual unenhanced images demonstrated attenuation values of 12 ± 29 HU (with 80 kVp/140 kVp) and 34 ± 10 HU (with 100 kVp/140 kVp) after removing the iodine component from the contrast-enhanced images. Dose distributions of the single photon beams calculated from the enhanced images and two series of virtual unenhanced images were compared to those from true unenhanced images as a reference. RESULTS The dose distributions obtained from both series of virtual unenhanced images were almost equivalent to that from the true unenhanced images, whereas the dose distribution obtained from the enhanced images indicated increased beam attenuation caused by the high attenuation characteristics of iodine. Compared to the reference dose distribution from the true unenhanced images, the dose distribution pass rates from both series of virtual unenhanced images were greater than 90%, while those from the enhanced images were less than approximately 50-60%. CONCLUSIONS Dual-energy virtual unenhanced CT improves the accuracy of dose distributions in radiotherapy treatment planning by removing the iodine component from contrast-enhanced images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The feasibility of direct treatment planning via contrast-enhanced computed tomography: an evaluation of dose differences based on the dimensional dose distribution comparison method

Background: We used a MapCHECK software-based dimensional dose distribution comparison method capable of evaluating point-to-point geometrical dose differences in volume to determine whether doses obtained from an enhanced computed tomography (CT)-based treatment plan, which better defines the target regions and organs at risk, differs from doses obtained from plain CT and then evaluated the fe...

متن کامل

Clinical applications of virtual, non-contrast head images derived from dual-source, dual-energy cerebrovascular computed tomography angiography

Background: This study set out to evaluate the utility of cerebrovascular virtual non-contrast (VNC) scans. Materials and Methods: Conventional non-contrast (CNC) and dual-energy computed tomography angiography (DE-CTA) head scans were conducted on 100 subjects, of which 46 were normal, 15 had parenchymal hematomas of the brain, 13 had ischemic infarction, 22 had tumors, and 4 had calcified les...

متن کامل

A feasibility study on the use of MV-CBCT images for urgent palliative treatment planning

Introduction: The application of 3D volumetric imaging modalities in treatment planning of radiation therapy can provide more precisely define tumor localization, and computed tomography (CT) is the most common accepted method for treatment planning. Given the lack of a CT scanner stationed in all radiotherapy departments and equipping most of the medical linear accelerators wi...

متن کامل

Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease.

OBJECTIVES To assess the value of dual-energy contrast-enhanced computed tomography (CT) imaging for the detection of urinary stone disease using dual-source CT. MATERIALS AND METHODS Forty consecutive patients (mean age 46.6 +/- 16.2 years, range 27-85 years) suspected of having urinary stone disease underwent dual-source CT of the urinary tract. A 3-phasic CT scan protocol consisting of a s...

متن کامل

Comparative Study between Electronic Portal Imaging Device (EPID) and Cone Beam Computed Tomography (CBCT) for Radiation Treatment Verifications

Introduction: Electronic Portal Imaging Device (EPID) and Cone Beam Computed Tomography (CBCT) are the preferred tools of Image Guided Radiotherapy (IGRT) and Dose Guided Radiotherapy (DGRT) which have been used for Radiotherapy treatment verifications. As a result, the number of publications dealing with these two tools for radiation treatment verification has increased consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014